LEAD ISOTOPE EVIDENCE REGARDING AGE OF GOLD DEPOSITS IN THE NOVA LIMA DISTRICT, MINAS GERAIS, BRAZIL

R.I. THORPE*, G.L. CUMMING** AND DRAGAN KRSTIC**

ABSTRACT Lead isotope data for trace galenas associated with five generally stratiform gold deposits in the vicinity of the Morro Velho mine confirm an Archean age for the host Nova Lima Group. The least radiogenic lead, from the Bela Fama deposit, yields a model age of 2.710 Ma, possibly near the true age for the host rocks, including the various facies of iron formation and related chemical sediments that constitute and are associated with the primary ore zones. Galenas from the Esperança, III and Bicalho deposits give model ages of about 2.550 Ma and 2.575 Ma, another from Bicalho a model age of about 2.495 Ma, and those from the Cuiabá and Faria deposits model ages of 2.410 to 2,425 Ma. A more radiogenic specimen from the Bela Fama deposit has a model age of 1.935 Ma. Alternatively, two-stage calculations can be applied to some of these data. The galenas in any case are interpreted to reflect deformation of the gold deposits and host rocks, and accompanying relatively local remobilization of constituents, including silica and lead, during a number of Proterozoic orogenic events. Correlations are suggested between these events and isotopic resetting events that have been identified for basement rocks in the region. These are the most primitive lead isotope compositions that have been obtained for Brazilian galenas.

RESUMO Dados de isótopos de chumbo para galenas associadas a cinco depósitos de ouro geralmente estratiformes, situados nas proximidades da Mina de Morro Velho, confirmam uma idade arqueana para o Grupo Nova Lima, que as contém. O chumbo menos radiogênico, proveniente do depósito de Bela Fama, fornece uma idade-modelo de 2,710 Ma, possivelmente próximo à idade verdadeira das rochas encaixantes, incluindo as várias facies da formação férrea e sedimentos químicos relacionados, que constituem as zonas do minério primário” e assim a eles associadas. As galenas dos depósitos de Esperança III e Bicalho fornecem idades-modelo de aproximadamente 2,550 Ma e 2,575 Ma; a do depósito de Bicalho fornece uma idade-modelo de cerca de 2,495 Ma, e as dos depósitos de Cuiabá e Faria, de 2,510 Ma. Um espécime mais radiogênico, proveniente da Bela Fama, possui uma idade-modelo de 1,935 Ma. Alternativamente, cálculos em dois estágios podem ser aplicados a alguns desses dados. Em qualquer dos casos as galenas são interpretadas como refletindo a deformação dos depósitos de ouro e das rochas encaixantes, acompanhada de remobilização local dos constituintes, incluindo silicato e chumbo, durante vários eventos orogênicos do Proterozóico. São sugeridas correlações entre esses eventos e os de acordamento isotópico que têm sido identificados para rochas do embasamento na região. Estas são as mais antigas composições de isótopos de chumbo já obtidas para galenas brasileiras.

INTRODUCTION AND GENERAL GEOLOGY

The important gold deposits of the Quadrilátero Ferrifero region, including the internationally-known Morro Velho mine, are hosted by rocks of the Nova Lima Group (Fig. 1), which form the main part of the Rio das Velhas Super-group. This supergroup is considered by Schorscher (1982) to represent a complete greystone-belt succession and includes also 1) the Quebra Osso Group which underlies the Nova Lima Group in the Santa Barbara region and consists predominantly of peridotitic komatite lavas (and associated intrusions?) and 2) the overlying Maquín Group which consists predominantly of phyllite, greywacke, quartzite and related sedimentary rocks. The Rio das Velhas Super-group has generally been considered as Archean, although its age is not well established.

The Nova Lima Group consists of a thick sequence of generally schistose and, in many cases, chloritic rocks that include phyllite, chlorite schist, volcanioclastic and mafic volcanic rocks. It is apparently more than 4,000 m thick (Dorr 1969, Schorscher 1982) and is exposed over a large area. Schorscher (1982) has emphasized the overall mafic composition of the group. Pillow lavas have been recognized locally (Ladeira 1980, 1981). The group also contains thin units of chemical metasedimentary rocks which include quartz-rich rocks (metachert?), and iron formation of oxide, carbonate and sulfide facies. Much of the gold mineralization is associated with these horizons of chemical sediments, in particular with semi-massive sulfide units that contain pyrrhotite, pyrite, arsenopyrite and minor chalcopyrite (Ladeira 1980) and with siliceous “lapa seca”. Gold is also concentrated in irregular quartz bodies and less commonly in quartz veins that crosscut Nova Lima Group rocks, particularly in close association with the chemical sedimentary (“exhalative” or “lapa seca”) horizons, and may possibly have been remobilized from these horizons.

The Rio das Velhas Super-group is considered to be younger than the surrounding migmatite-gneiss “basement” terranes, with which it is always in fault contact, because of its lower metamorphic grade and because it lacks granitic intrusions, although such intrusions are common in the Basement Complex (Ladeira 1980, Schorscher 1982). These authors considered that there is good evidence for polyphase deformation of Rio das Velhas rocks. Schorscher (op. cit.) attributed the earlier phase of intense folding about subvertical axes (not, however, observed in the Nova Lima district) to the Rio das Velhas orogeny, dated at 2,790 Ma (Herz 1970) by the Rb-Sr method on moscovite from mica schist of the Rio das Velhas Super-group (Nova Lima Group?). This age, however, is about 2,890 Ma using the presently-accepted decay constant for 87Rb (3.35×10^{-11}/yr). In the south-central part of the Quadrilátero Ferrifero, the Bagão Complex of basement rocks has “intruded” Rio das Velhas rocks as a mantled gneiss dome (Ladeira 1980, Schorscher 1982, Cordani & Brito Neves

* Geological Survey of Canada, 601 Booth Street, Ottawa, K1A 0E8, Canada.
** Department of Physics, University of Alberta, Edmonton, Alberta, T6L 2J1, Canada.
1982) and has deformed adjacent Minas rocks. The Baixo Complex rocks are Archean (about 2 700 Ma), but were remobilized at about 2 000 Ma (Cordani & Brito Neves 1982).

Rocks in the region, including those of the Minas Super-group of Proterozoic age, were subjected to the major Minas-Espinhaço orogeny at about 2 000 Ma. This corresponds to the widely recognized Transamazônico orogenic cycle (1 900 to 2 100 Ma by Rb-Sr dating; Cordani & Brito Neves 1982). According to Cordani et al. (1980) the rocks were also deformed during an Upper Proterozoic orogeny (Brasilião cycle).

Geochronological data remain very sparse for rocks other than those of the basement domains in the Quadrilátero Ferrifero region. Principal geochronological gaps include the lack of reliable ages for the Nova Lima Group, and for the time of formation of “remobilized” or epigenetic gold deposits, assuming gold ore in sulfide-rich units closely associated with “lapa secâ” phases is syngentic. This study reports the results of lead isotope analyses of trace galenas associated with gold orebodies in the Nova Lima area, undertaken in an attempt to define age limits for the mineralization, or ore remobilization, and for the host rocks of the Nova Lima Group.

Previous geochronology The most extensive geochronological studies have been of the basement rocks in the southern part of the São Francisco craton, adjacent to the Quadrilátero Ferrifero. On the basis of 60 new Rb-Sr and K-Ar age determinations and the data previously available, Teixeira (1982) subdivided the granitic-gneissic basement terrane west of the Quadrilátero Ferrifero into four do-

mains. In the west-central region the Rb-Sr data indicate an age of about 3 000 Ma, a possible secondary event at about 2 500 Ma, and a probable Transamazônico cycle age for the Cristais granite batholith, at about 2 048 ± 70 Ma. The Transamazônico event was also reflected by a few K-Ar amphibole, plagioclase and biotite ages at about 2 140 Ma, a Rb-Sr isochron at 2 078 ± 78 Ma for a pegmatitic intrusion, and by other K-Ar mineral ages ranging from 2 077 ± 62 to 1 763 ± 82 Ma. In the central region whole-rock Rb-Sr isochrons at about 2 350 and 2 100 Ma were obtained, and both apparently reflect reworking of older crustal material. K-Ar analyses yielded Transamazônico cycle ages of 1 730 to 2 000 Ma. In the northern region Besang et al. (1977) obtained an approximate Rb-Sr isochron age of 2 400 Ma for granite-granodioritic gneisses from the Carioca-Pará de Minas area. Cordani et al. (in press; results reported by Teixeira 1982) have concluded that gneisses and granitic rocks in the Sete Lagos area define a Rb-Sr isochron at about 2 100 Ma. Data for the Barbacena area (generally not considered as belonging to the São Francisco craton according to Teixeira 1982) in the eastern region define a Rb-Sr whole-rock isochron age of about 3 000 Ma. Rocks from elsewhere in the eastern region, from near Congonhas do Campo, Mariana and Itabirito, yield a poorly-defined isochron at 2 750 Ma, and others yield a similar isochron representing the Minas-Espinhaço orogeny (Transamazônico Cycle) at 2 100 Ma. The rocks of the Baixo Complex yielded a wide range of apparent ages. Numerous K-Ar ages in the 550 to 450 Ma range interpreted by Teixeira to reflect a Brasilião Cycle thermal overprint associated with large thrust faults.

Character of the gold deposits The Morro Velho, which has produced more than 250 tons of gold during its history, and Raaposos mines are the most important and famous deposits of the district. The orebodies are typically stratiform, in many cases very strictly stratiform, and are closely associated with carbonaceous facies iron formation, sulfide-rich units (sulfide facies iron formation?), and quartz-rich units (siliceous “lapa secâ”, metachert?). However, some of the quartz-rich ore zones are at present, due perhaps to intense deformation, very irregular rather than stratiform bodies. The host rocks are chlorite schists, sericite schists, phyllites and quartz-carbonate rocks of the Nova Lima Group. At the Raaposos mine gold is associated with four facies of iron formation (Ladeira 1980; Vial 1980a): oxide (magnetite), carbonate (siderite, ankerite, iron-dolomite), silicate (biotite, cummingtonite-grunerite), and sulfide (pyrite, pyrrhotite, arsenopyrite and chalcopyrite). The Morro Velho mine has been described recently by Ladeira (1980), who concluded that many of the orebodies represent primary syngenetic accumulation of gold in association with chemical sediments. The Agnico-Eagle Mine at Joutel, Quebec, Canada has many of the lithological characteristics of Morro Velho, but has been much less deformed and thus has much better preservation of primary textures and features (Barnett et al. 1982). Observations at the Agnico-Eagle deposit are in accord with interpretation of sulfide-rich and carbonate-rich units at Morro Velho as chemical sedimentary in nature and siliceous “lapa secâ” as metachert.

The Bicalho deposit was mined by the St. John del Rey Mining Co. between 1940 and 1943. Gair (1962) consider-
ed the ore to be identical to that at the Morro Velho mine. Gold is associated with pyrite and pyrrhotite in a conformable bed of gray "lapa seca". The deposit has also been described by Vial (1980b). Production at the Faria mine, which also commenced in 1940, was suspended in 1947. The Faria lode has been reported to be mainly in schist with iron-formation forming the footwall (Gair 1962). The orebodies are unrelated to folding of the strata. Moresci (1977) has described the deposit in greater detail. The gold mineralization is associated with pyrite, pyrrhotite and arsenopyrite that are concentrated in carbonate-facies iron formation, specifically in particular layers in the well-layered rock. The iron formation is associated with graphitic phylite in a sedimentary sequence (quartz-feldspathic schist, sericite schist, chlorite schist, and quartz-carbonate schist) that includes tuffaceous rocks and is both overlain and underlain by mafic volcanic rocks. Very little information has been published on the Bela Fama deposit (Gair 1962, Torres 1975). According to Gair (1962) the deposits evidently consist of sulfides in a northwestward-trending, northeastward-dipping bed of "lapa seca".

Lead isotope results Galenas for lead isotope study were obtained wherever possible from gold deposits in the area and represent a minor mineral phase in the ores. Galenas from the Faria, Esperança III and Cuiabá mines (Fig. 1) are from veins that cut iron formation, while those from the Bicalho and Bela Fama mines are from white quartz veins that cut siliceous "lapa seca". For the latter mines, therefore, the galena and associated white quartz may have been epigenetically introduced or simply remobilized and recrystallized in situ.

The galena specimens were analyzed in the mass spectrometry laboratory of the Department of Physics, University of Alberta, Edmonton. Samples were prepared by dissolving a small fragment of the galena in 10 ml of high purity 2N HCl, and evaporating the solution slowly until PbCl₂ crystallized. The crystals were extracted from the solution, washed in 4N HCl, dried and dissolved in water. An aliquot of 1 to 2 μg was loaded on a Re filament in a silica gel-phosphoric acid mixture and analyzed on a Micromass MM-30 mass spectrometer. Nineteen recent analyses of the NBS SRM981 standard have yielded measuring errors of 0.21, 0.26 and 0.29% for the ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb and ²⁰⁸Pb/²⁰⁴Pb ratios, respectively. The correlation coefficient between pairs of ratios is 0.84.

Nine analyses (Tab. 1) have been obtained for seven galena specimens from five gold deposits in the Nova Lima area. These data clearly establish an Archean age for part of the galena mineralization (Tab. 1, Fig. 2). They are very similar to analyses that have been obtained for galenas from gold deposits in the Superior Province of the Canadian Shield (Thorpe 1982, 1983). Specifically, data for the Bicalho and Esperança III deposits, and for the least radiogenic Bela Fama analysis, lie within or very near the main field that has been established for these Canadian deposits. The Cuiabá and Faria analyses are a little more radiogenic.

Bela Fama analysis TQ82-148, which plots near the Superior Province paleoichron (Thorpe 1982) in a position similar to a large number of Superior Province gold deposits, yields a model age of 2.710 Ma. This age, based on the model of Thorpe (1982, 1983), is particularly significant because it suggests that the gold mineralization with which

![Figure 2. Lead isotope data for gold deposits of the Nova Lima District in relation to isochrons according to the model proposed by Thorpe (1982, 1983) and the main field of analyses for gold deposits of the Superior Province, Canada. The least radiogenic previous analyses for Brazilian galenas, for the Morro do Bule vein and Boquira Mine, are also shown.](image-url)

Table 1 – Lead isotope data for galena from gold deposits in the Nova Lima district

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Mine</th>
<th>²⁰⁶Pb/²⁰⁴Pb</th>
<th>²⁰⁷Pb/²⁰⁴Pb</th>
<th>²⁰⁸Pb/²⁰⁴Pb</th>
<th>U</th>
<th>Th/U</th>
<th>Model Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>TQ82-146</td>
<td>1</td>
<td>13.729</td>
<td>14.694</td>
<td>33.432</td>
<td>9.000</td>
<td>3.916</td>
<td>2569 Ma</td>
</tr>
<tr>
<td>TQ82-146**</td>
<td>1</td>
<td>13.726</td>
<td>14.695</td>
<td>33.441</td>
<td>9.015</td>
<td>4.021</td>
<td>2574 Ma</td>
</tr>
<tr>
<td>TQ82-147</td>
<td>1</td>
<td>13.901</td>
<td>14.763</td>
<td>33.543</td>
<td>9.228</td>
<td>3.852</td>
<td>2493 Ma</td>
</tr>
<tr>
<td>TQ82-148</td>
<td>2</td>
<td>13.527</td>
<td>14.648</td>
<td>32.263</td>
<td>9.258</td>
<td>3.955</td>
<td>2710 Ma</td>
</tr>
<tr>
<td>TQ83-37</td>
<td>2</td>
<td>14.737</td>
<td>14.907</td>
<td>34.275</td>
<td>8.515</td>
<td>3.826</td>
<td>1935 Ma</td>
</tr>
<tr>
<td>TQ83-39</td>
<td>4</td>
<td>13.626</td>
<td>14.598</td>
<td>33.301</td>
<td>8.537</td>
<td>3.951</td>
<td>2551 Ma</td>
</tr>
<tr>
<td>TQ83-57**</td>
<td>5</td>
<td>13.856</td>
<td>14.669</td>
<td>33.495</td>
<td>8.561</td>
<td>3.912</td>
<td>2418 Ma</td>
</tr>
</tbody>
</table>

*1 = Bicalho; 2 = Bela Fama; 3 = Faria; 4 = Esperança III; 5 = Cuiabá

** duplicate analyses
this galena is associated, and the host rocks, are at least this old. The calculated Th/U ratio shows some promise as a parameter that may indicate which leads have had a single stage or essentially single-stage evolution. It has recently been observed by the senior author that such deposits generally have calculated Th/U ratios in the range 3.96 to 4.20. The Faria and Esperança III analyses, and one each from the Bicalho and Bela Fama deposits, fall in or very near this range (Tab. 1), indicating possible single stage evolution.

If the Esperança III and Bicalho TQ82-146 leads were essentially single-stage, an age of formation of about 2,550 to 2,575 Ma is indicated. The Faria and Cuiabá leads, although the latter falls slightly outside the criterion range of Th/U values, have comparable and possibly meaningful 2,410 to 2,425 Ma model ages.

The lead isotope data, however, define at least two possible secondary isochrons for which two-stage calculations may be appropriate. The Bicalho analyses lie on a possible subparallel line above the Matachewan line (Fig. 2) established by Sinclair (1982) for deposits and occurrences of gold and other types in the Matachewan area, Superior Province, Ontario. The Matachewan line was interpreted as due to mineralization or remobilization at about 2,400 Ma, with the lead being derived from source rocks about 2,720 Ma old. An alternative explanation, isotopically equivalent to remobilization, is that some radiogenic lead was added at 2,400 Ma to galenas that originally formed at about 2,720 Ma. If the Bicalho analyses define a two-point secondary isochron, with a slope of 0.395 + 0.015 at 1σ, it would appear that some reasonable limits to the ages of the source and of the mineralization or remobilization can be postulated. Assuming reasonable accuracy for model ages by the Superior Province model, it is unlikely that t2 is greater than about 2,500 Ma, the approximate model age for the most radiogenic analysis. It can probably also be reasonably assumed that the 2,710 Ma model age of the Bela Fama deposit is a minimum value for t1, the age for the source of the lead (and also the age of primary mineralization if t2 is interpreted as the age of a remobilization event). Some possible two-stage pairs are:

<table>
<thead>
<tr>
<th>t1</th>
<th>t2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,680 Ma</td>
<td>2,500 Ma (probable max.)</td>
</tr>
<tr>
<td>2,710 Ma</td>
<td>2,465 Ma</td>
</tr>
<tr>
<td>3,890 Ma (max.)</td>
<td>0</td>
</tr>
<tr>
<td>3,000 Ma</td>
<td>2,105 Ma</td>
</tr>
</tbody>
</table>

A value as great as 3,890 Ma for t1 seems unlikely. If the maximum μ value for the source of the Bicalho leads is taken to be 9.4, the approximate maximum value established for Superior Province gold deposits, the intersection of the Bicalho secondary isochron with a growth curve of this μ value gives a practical maximum value of 2,985 to 2,999 Ma for μt1. For this reason an age for the source rocks, and for the mineralization, no greater than about 3,000 Ma is preferred. It is of interest that this corresponds to the maximum Pb-Sr whole-rock isochron ages obtained by Teixeira (1982) for basement rocks in the region. Although U-Pb zircon ages would be more relevant to the present study, and are commonly at least slightly older than Pb-Sr isochron ages on the same rock suites, it nevertheless appears that 3,000 Ma is the maximum source age that can be defended on the basis of known geological relationships and available geochronological data. With 3,000 Ma as the maximum source age, mineralization, remobilization or addition of a radiogenic lead component must have occurred prior to about 2,105 Ma. The latter is in reasonable agreement with ages for the major Minas-Espinhaço orogeny (Transamazonic Cycle) that affected rocks in the region, and throughout the São Francisco Craton. However, it is striking that the calculated 2,710 Ma and 2,465 Ma two-stage ages are in good agreement with the model ages of the least radiogenic Bela Fama lead and the most radiogenic Bicalho analysis. Also, some of the basement rocks west of the Quadrilátero Ferrífero were affected by a secondary event at about 2,500 Ma (Teixeira 1982). Thus, both the 3,000 Ma - 2,105 Ma and 2,710 Ma - 2,465 Ma pairs are possibilities, although the authors tentatively favour the latter because, while some rocks in basement domains in the region are 3,000 Ma old, Nova Lima Group rocks are a more logical source for the lead and these are probably somewhat younger.

The best apparent secondary isochron is defined by the Esperança III, Cuiabá and Bela Fama TQ83-37 analyses. This line has a slope of 0.279 + 0.003 at 1σ, with a MSWD value of 2.62. The data are also nearly linear on a plot of 206Pb/238U versus 207Pb/206Pb, suggesting that the leads may have had comparable two-stage histories. The calculated maximum age of mineralization or remobilization (and minimum source age) is about 2,175 Ma. While a slightly greater source age than this in combination with a slightly lower mineralization age would explain the slope of the secondary isochron, and an approximate 2,175 Ma age might be acceptable as a reflection of the Minas-Espinhaço orogeny, it seems unlikely that the isotopic difference was generated in this way. This is because, 1) the Esperança III yields a significantly older model age, 2) evolution of the Bela Fama TQ83-37 lead isotope composition would require a very high μ value, and 3) short-term evolution would be expected to result in very much greater dispersion of calculated Th/U values. Calculated deposition or remobilization ages for leads on the line at assumed source ages of 3,000 Ma, 2,700 Ma and 2,400 Ma are about 975 Ma, 1,520 Ma and 1,930 Ma, respectively. However, none of the latter ages are in agreement with the approximate ages established for Proterzoic orogenic events in the region. While the Esperança III, Cuiabá and Bela Fama TQ83-37 analyses plot in a very linear manner, the precise interpretation of this possible secondary isochron is thus obscure. Perhaps they are best considered as unrelated, and the Esperança III and Cuiabá leads interpreted in terms of model ages.

It may be of interest that the possible Esperança III-Bela Fama-Bicalho secondary isochrons intersect approximately on the Stacey-Kramers (1975) average lead evolution curve at a point that has a model age of about 2,900 Ma. However, in view of the wide range of isolate ratios for Superior Province gold deposits (Fig. 2) there is no compelling reason to believe that the sources for the lead in the five galena specimens had a single initial isotopic composition, and this calculated age thus probably has no real significance.

The most radiogenic Bela Fama analysis should possibly be related to the less radiogenic Bela Fama value. This line, which includes the least radiogenic Bicalho analysis, has a slope of 0.214 ± 0.003 at 1σ, with a MSWD value of 0.63.
These data are also linearly distributed on a plot of $^{208}\text{Pb}/^{206}\text{Pb}$ versus $^{207}\text{Pb}/^{206}\text{Pb}$, which suggests that the line may be either a valid secondary isochron or due to mixing. Two-stage calculations in this case yield a 595 Ma mineralization or remobilization age for the more radiogenic lead at an assumed source age of 2.710 Ma. This calculated 595 Ma age is close to the 620 Ma age suggested by Cordini et al. (1973) for the Brasiliano orogenic cycles that has been superimposed, at least as a thermal event, on rocks of the region (Teixeira 1982).

DISCUSSION

The lead isotope analyses reported here are the least radiogenic that have been obtained for Brazilian galenas. The least radiogenic analyses previously published are for the Boquira mine in Bahia State (Cassadanne & Duthou 1981) and for galena from the Morro do Bule vein that cuts dolomite of the Minas Group in the Ouro Preto region (Cassadanne et al. 1972). The Boquira data, which has a very large scatter due to ^{206}Pb measurement error, yields average isotope values from 13 analyses (one analysis eliminated because it appears to represent a more radiogenic composition) of 14.608, 15.252 and 34.558 for the $^{208}\text{Pb}/^{206}\text{Pb}$, $^{207}\text{Pb}/^{206}\text{Pb}$ and $^{206}\text{Pb}/^{206}\text{Pb}$ ratios, respectively. This average and the Morro do Bule analysis have been plotted in Fig. 2. Model ages for these according to the Superior Province paleosolochron model of Thorpe (1982, 1983) are 2 373 and about 2 150 Ma, respectively.

The Bicalho, Esperança III and Bela Fama TQ-82-148 analyses are very comparable to values that have been obtained for Archean gold deposits in the granite-greenstone belts of the Superior Province, Canada. The established zircon U-Pb ages for these belts are in most cases in the range 2.692 to 2.750 Ma. The 2 710 Ma model age for the Bela Fama analysis could be close to a primary age because, as noted previously, the galena is from white quartz that “eats” quartz “fapa secas” and could thereby be primary, with the radiogenic appearance of the host quartz due to recrystallization in situ. It is not clear which of the more radiogenic lead isotope analyses should be interpreted in terms of model ages and which in terms of secondary isochron relationships. In any case they should be attributed to lead introduction or remobilization during subsequent Proterozoic deformation events. The isotopic imprint of a series of major Proterozoic orogenetic events in the region has been documented (Teixeira 1982), and some of these can be tentatively correlated with possible ages for galenas from the gold deposits. Because the galenas are only trace constituents of the gold zones within the mines, the most logical lead source would appear to be the host Nova Lima Group rocks. Remobilization of some constituents, including lead and silica, and formation of epigenetic gold-quartz veins and irregular bodies, possibly by relatively local remobilization from syngeneric gold zones, might be anticipated in conjunction with the major Proterozoic orogenic events. The formation of many of the trace galenas may thus be closely linked to the formation of epigenetic gold orebodies.

CONCLUSIONS

The lead isotope data for galenas from gold deposits in the Nova Lima district clearly indicate an Archean age for the Nova Lima Group, in accord with the conclusions of Ladeira (1980), Schousscher (1982) and many other workers, but in contrast to the Proterozoic age recently inferred by some authors (e.g., Muller et al. 1982). Gold mineralization in the district was emplaced in part in the Archean, possibly at about 2.710 Ma, the model lead age of the least radiogenic galena. However, we consider that the lead isotope data only constrains the primary age of mineralization to the interval 2 700 to 3 000 Ma.

The gold ores were slightly remobilized with the introduction of small amounts of lead to form galena during Proterozoic orogenic events, possibly at 2 410 to 2 425 Ma, at approximately 2 100 to 2 175 Ma during the Transamazonico orogeny, and at about 600 Ma during the Brasiliano orogeny. Some features of the lead isotope compositions can be explained by invoking events at about 1 935 Ma and/or 1 520 Ma, but such events must be considered highly speculative until they are supported by additional evidence. Epigenetic gold-bearing quartz veins and irregular bodies may have been formed by more extensive remobilization, or by the introduction of gold-bearing fluids from external sources, during the major Proterozoic orogenic events.

While confirming an Archean age for rocks of the Nova Lima Group, this study only serves to emphasize the need for more precise geochronological definition of their age and of the subsequent Proterozoic orogenic events. Such a study could contribute significantly to resolving the problem of the relative importance of syngenetic and of later remobilization processes in genesis of gold orebodies within the Nova Lima district.

Acknowledgments

Galena specimens for this study were kindly provided by Diogenes S. Vial, Mineração Morro Velho S.A., Nova Lima. The figures were drafted by Gary Young of the Geological Survey of Canada. In addition the authors are grateful to J.M. Franklin, D.F. Sangster and J.M. Duke for critically reading the manuscript.

The authors wish to thank Mineração Morro Velho S.A., the company engaged in exploration, development and mining of the deposits, for permission to publish this paper.

REFERENCES

CORDANI, U.G.; DELHAL, J.; LEDENT, D. - 1973 - Orogenèses superposées dans le Précambrien du Brésil sud-orientai...

MANUSCRITO
Recebido em 17 de julho de 1984
Revisão aceita em 24 de setembro de 1984

"As simplicidades das leis naturais surgem das complexidades das linguagens que usamos para exprimi-las."

Eugene P. Wigner