SIGNIFICANCE OF GARNET-BEARING METAMORPHIC ROCKS IN THE ARCHEAN SUPRACRUSTAL SERIES OF THE Carajás MINING PROVINCE, NORTHERN BRAZIL

CARLOS EDUARDO DE MESQUITA BARROS 1,2 AND PIERRE BARBEY 2

ABSTRACT The Archean evolution of the Carajás Mining Province was marked by the emplacement of syntectonic alkaline granites (cf. Estrela and Planalto granites) at 2.75 Ga. The Estrela Granite Complex produced changes in tectono-thermal conditions and rheology of its volcano-sedimentary host rocks (Salobo, Pojuca, Grão-Pará and Rio Novo groups). Metamorphic recrystallization in the contact aureole around the Estrela Granite Complex reached hornblende and pyroxene hornfels facies. The aureole is characterized by the local presence of schists containing abundant snowball garnet porphyroblasts indicating a top to south movement related to emplacement of the Estrela Granite Complex. It is suggested that occurrences of garnet-bearing schists, near Salobo and Pojuca areas, may represent tectono-metamorphic aureole around other Late-Archean syntectonic granite bodies.

Keywords:

INTRODUCTION The Carajás Mining Province (Northern Brazil) is well known by its important Au, Fe, Mn, Ag, Mo and Cu deposits which are hosted in Archean metavolcanic-sedimentary sequences (Salobo, Pojuca, Bahia, Rio Novo groups; Docegeo 1988). Geochronological data and field relationships reveal that a granite basement (2.81 Ga) underlies these 2.76 Ga supracrustal rocks (Olszewski et al. 1989, Machado et al. 1991). Successive pulses of granites intruded these supracrustals at ~2.75 Ga (Huhm et al. 1999), ~2.56 Ga (Machado et al. 1991, Lindenmayer et al. 1994) and ~1.88 Ga (Olszewski et al. 1989, Machado et al. 1991, Dall’Agnol et al. 1994).

The presence of garnet-bearing schists in Carajás has first been documented by Beisiegel et al. (1973) and later by Docegeo (1988), Lindenmayer (1990), Winter (1994), Melo and Villas (1997) and others.

Here we discuss the metamorphic and tectonic meaning of the garnet-bearing rocks of the contact aureole around the Estrela Granite Complex, an Archean alkaline A-type massif (Barros 1997, Barros and Barbey 1998). The granite complex is situated to the east from Carajás Range, in the vicinity of the Curionopolis and Parauapebas (Fig. 1). Our conclusions are then extended to the north of the Carajás Range and some implications for the lithostratigraphy of the supracrustal series in the Carajás area are discussed.

Silicates were analyzed by transmission electron microprobe (10A, 15kV, 10s) at the Universite Henri Poincare (Service de Microanalyse). The garnet-bearing rock chemical analysis was obtained by ICP-MS at the CRPG laboratories, Vandoeuvre-lès-Nancy, France.

WHOLE-ROCK MINERALOGY AND CHEMISTRY Garnet-bearing schists outcrop near the southeastern contact of the Estrela Granite Complex (Fig. 2). They consist of garnet porphyroblasts within a matrix composed of biotite (31%), hornblende (23%), plagioclase (An52-45; 22%), quartz (21%) and minor ilmenite (2%), epidote, zircon, apatite and tourmaline (0.5%). Proportions of garnet porphyroblasts are variable but may reach 30% of the whole rock volume (Fig. 3a).

Amphibole is pale yellow-green and bluish green ferrotschermakite (cf. Leake et al. 1997), with high contents of Al2O3 (15.50 - 16.60 %), FeO (19.30 - 20.80 %), Na2O (1.50 - 1.32 %), relatively low values of TiO2 (0.30 - 0.50 %) and low #Mg (0.36 - 0.39 %) values (Tab. 1). Biotite is chemically (Table 1) homogeneous (FeO = 19.3 - 20.0 %; MgO = 10.7 - 11.0 %; TiO2 = 1.7 - 2.0 %). Garnets have relatively homogeneous compositions (Table 1) with Almandine (0.73-0.75%) predominating largely over the other components (Pyrope = 0.11-0.14%; Spessartine = 0.02-0.07%; Grossular = 0.09%). Slight decreasing of MnO from the core (3.15%) to the margin (2.32%) of the crystals evidences a discrete zoning. Whole rock composition displays high FeO (15.73%) and Al2O3 (14.81%) values and moderate MgO (4.63%), CaO (4.46%), K2O (1.81%) and Na2O (1.58%) contents. REE pattern reveals a slight LREE fractionation [(La/Sm)N=4.05] and flat HREE [(Gd/Yb)N=1.42] and no Eu anomaly. In the Total Alkalis vs. Silica diagram (Le Maitre 1989), this rock plots in the andesite-basalt composition. However a possible sedimentary derivation cannot be discarded (i.e. graywacke).

STRUCTURE AND METAMORPHISM The rock has a continuous subvertical schistosity parallel to the contact of the granite (Fig. 2) and given by the preferred orientation of biotite, amphibole (nematoblastic texture), plagioclase and quartz ribbons. Quartz occurs as neoblasts aggregates, strongly oriented along the schistosity. Neoblasts are polygonal and show, only very locally, undulose extinction and subgrain, suggesting significant recrystallization.

Two morphological types of garnet-porphyroblasts (Figs. 3a and 3c) occur in these rocks: snowball and tabular. Both are in general centimeter-sized, asymmetric and contain abundant inclusions of quartz, ferromagnesian minerals and ilmenite. The helicitic structures

1 - Universidade Federal do Pará, Centro de Geociências, Campus Universitario do Guamá, CP 1611, Belém, 66075-900. E-mail: cadu@ufpa.br
2 - Université Henri Poincaré, Nancy 1, CNRS. 15, Rue Notre-Dame des Pauvres, BP 20, Vandoeuvre-lès-Nancy - Cedex, 54501. E-mail: barbey@crpg.cnrs-nancy.fr
are consistent with the stretching lineation indicating a top to the south movement. Tabular garnet porphyroblasts may be decimeter long (up to 20 cm; Fig. 3b) and may envelope the snowball ones. Occurrence of garnet is limited to mafic schists from the inner aureole (Fig. 2). According to Cooper (1972), porphyroblasts are more frequent in middle and higher conditions of the oligoclase zone, mainly in iron-rich mafic rocks.

Quartz veins millimeter wide and meter to decimeter long (Fig. 3a), locally with tourmaline, are common. They are generally conformable with the schistosity, but may cut across. In the latter case, veins are moderately to strongly fold. Quartz veins are frequently associated to garnet-enriched domains. Tourmaline needles are oriented along stretching lineation and commonly microboudinage (Fig. 3d).

The coexistence of garnet with calcic plagioclase (An2-45), biotite and ferrotschermakite indicates medium to high-grade facies conditions (Winkler 1979, Spear 1995). Normal zoning shown by regularly decreasing of MnO from the core (3.15%) to the margin (0.79%) suggests increasing temperatures during garnet growing (cf. Harte and Graham 1975, Miyashiro 1994). Estimates of P-T conditions in the contact aureole (Barros 1997) using garnet-hornblende and biotite-garnet geothermometers (Graham and Powel 1984, Ferry and Spear 1978) yielded temperatures between 520° and 612°C which is comparable to temperatures (550°-650°C) estimated from the pair ferropargasite-calcic plagioclase of amphibolites from the inner aureole. Pressures are estimated within 2.5 to 3.5 kbar range (Barros 1997).

DISCUSSION Significance of garnet porphyroblasts in the Estrela Granite Complex The inner part of the contact aureole around the Estrela Granite Complex is characterized by the presence of syntectonic garnet porphyroblasts. This observation is consistent with structural data about the Estrela Granite Complex that shows its syntectonic emplacement. Barros (1997) describes that this emplacement occurred in two successive stages: (i) an inflation stage controlled by magma driving pressure intrusion accompanied by ballooning, followed by (ii) a passive stage of deflation controlled by regional stress. The direction and sense of rotation of the snowball garnets and the stretching lineation (inverse top to the south movement) are consistent with ascent of the granites.

Porphyroblasts growth is controlled by several processes: material dissolution, solution transfer, nucleation and growth (Bell et al. 1986, figure 3). Garnet-bearing mafic schist. Note the presence of snowball garnet porphyroblasts and of quartz veins conformable with the schistosity. (b) Detail of mafic schist showing a decimeter long tabular garnet porphyroblast and associated quartz domains. (c) Photomicrograph of mafic schist showing a snowball garnet with helicitic ilmenite inclusions. Note that tabular garnet envelops the snowball porphyroblast. (d) Photomicrograph of mafic schist showing microboudinage of tourmaline crystals.
Table 1. Representative mineral-chemistry data of the garnet-bearing metabasite from the inner aureole around the Estrela Granite Complex.

<table>
<thead>
<tr>
<th></th>
<th>Garnet</th>
<th>Hornblende</th>
<th>Biotite</th>
<th>Plagioclase</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>37.67</td>
<td>37.21</td>
<td>39.98</td>
<td>40.66</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>20.74</td>
<td>20.80</td>
<td>16.21</td>
<td>16.10</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.002</td>
<td>0.05</td>
<td>0.47</td>
<td>0.34</td>
</tr>
<tr>
<td>FeO</td>
<td>33.54</td>
<td>33.33</td>
<td>20.75</td>
<td>20.06</td>
</tr>
<tr>
<td>MnO</td>
<td>2.316</td>
<td>3.15</td>
<td>0.16</td>
<td>0.00</td>
</tr>
<tr>
<td>MgO</td>
<td>2.959</td>
<td>2.82</td>
<td>6.47</td>
<td>6.58</td>
</tr>
<tr>
<td>CaO</td>
<td>3.011</td>
<td>3.13</td>
<td>10.58</td>
<td>10.57</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.002</td>
<td>0.00</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>NiO</td>
<td>0.002</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.553</td>
<td>1.50</td>
<td>1.32</td>
<td>0.40</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.001</td>
<td>1.00</td>
<td>0.27</td>
<td>0.34</td>
</tr>
<tr>
<td>Total</td>
<td>100.30</td>
<td>100.50</td>
<td>96.39</td>
<td>96.05</td>
</tr>
</tbody>
</table>

Silicates were analyzed by electron microprobe, CAMECA-SX-50 (10A, 15kV, 10s), at the Université Henri Poincare (Service de Microanalyse).

Bell and Cuff (1989). According to these authors, strain partitioning can promote porphyroblasts growth within flattening strain domains. Otherwise, porphyroblasts dissolution is more facilitated in shear strain domains. Fluid production, fundamental during porphyroblast formation, is controlled by dehydration (Bell et al. 1986, Bell and Cuff 1989), which are very common within thermal aureoles, and mainly when flattening stresses are imposed by intrusions (Bateman 1985). The close spatial relationship between garnet porphyroblasts and abundance of tourmaline-bearing quartz veins supports the role of a fluid phase during garnet growth (dissolution/transfer/precipitation). The two morphologically distinct types of garnet and their relative growth chronology could reflect distinct growth conditions. Snowball garnet probably formed under differential vertical movement between the granite body and the country rocks, whereas tabular garnet is mainly due to flattening of the contact aureole. This can be tentatively related to the two-stage emplacement of the granite complex. The subvertical lineation and garnet rotation microstructures may express accommodation of differential movements between the granites and the host-rocks during the first stage of granite emplacement (inflation), whereas the tabular morphology of the subsequent garnet porphyroblasts may result mainly from flattening (deflation).

Significance of garnet-bearing schists in the Itacaiunas Supergroup In the Salobo and Pojuca domains the presence of garnet-bearing schists has been reported by several authors, and interpreted as corresponding to more ancient higher grade sequences (Salobo and Pojuca) than the regional greenschist facies sequences (Grão-Pará). We believe that these garnet-bearing rocks may also result from thermal metamorphism around granite plutons. First, the extend of the Archean alkaline granite magmatism has been underestimated in the Carajas Mining Province. For instance, to the north of the Carajas's Range, between the Igarape Salobo and Igarapé Pojuca groups, widespread quartzo-feldspathic rocks were interpreted as belonging to the basement assemblage (Xingu Complex). This is far from being certain, and should be re-assessed. Then, the Estrela Granite Complex is not the only Archean alkaline granite in the Carajas's area, but has many similarities with the 2,56 Ga Old Salobo Granite (Machado et al. 1991, Lindenmayer et al. 1994) as well as with the 2,75 Ga Planalto Granite (Huhn et al. 1999). Lastly, there seems to be a correlation between the location of the garnet-bearing rocks and the quartzo-feldspathic domains. For instance, Lindenmayer and Fyfe (1992) suggest that the Igarape Salobo and Igarapé Pojuca groups correspond to higher metamorphosed lateral variations of the Grão-Pará Group, metamorphosed under greenschist facies. Moreover, Olszewsky et al. (1989) and Matta and Teixeira (1990) report an increase in the metamorphic degree and schistosity intensity in metabasites toward the crystalline rocks (north and northeast of the Carajas Range). These data and the presence of the garnet-bearing rocks suggest, by comparison with the Estrela Granite Complex, that the size of the Old Salobo granite or of other earlier alkaline granite (ca. 2.7 Ga) may have
...have demonstrated that the Grito-Para (low grade) and Salobo-Pojuca (medium to high-grade) sequences are contemporaneous and belong to the same lithostratigraphic unit.

CONCLUSIONS

Late-Archean metamorphic and tectonic evolution of the Carajás Mining Province was controlled by syntectonic intrusions of relatively hot alkaline granites at 2.75 Ga (Estrela Granite Complex). These granites emplaced in high crustal levels (2.5 - 3.5 kbar) within volcano-sedimentary sequences previously metamorphosed under greenschist conditions (Barros 1997, Barros and Barbey 1998). Mafic schists containing syntectonic garnet porphyroblasts are locally found around the Estrela Granite Complex. These garnet-bearing schists are part of the contact aureole and are considered to result from the thermal and mechanical effects of pluton emplacement. It is suggested that other garnet-bearing rocks found in higher grade areas of the Carajás terrane close to crystalline domains, could also represent the contact aureole around unreported Late-Archean granite bodies.

Acknowledgements

This paper was supported by Universite Henri Poincare, Universidade Federal do Pará, Centre de Recherche Petrographiques et Geochimiques - Centre National de la Recherche Scientifique, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico e PADCT/FINEP (4/387/0911.00 e 6.5.92.0025.00). To two anonymous referees of the RBG for their critical review of the manuscript.

References

Blackwell Sci. Publ.

Blackwell Sci. Publ.

